H(t)=-16t^2+9t+40

Simple and best practice solution for H(t)=-16t^2+9t+40 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H(t)=-16t^2+9t+40 equation:



(H)=-16H^2+9H+40
We move all terms to the left:
(H)-(-16H^2+9H+40)=0
We get rid of parentheses
16H^2-9H+H-40=0
We add all the numbers together, and all the variables
16H^2-8H-40=0
a = 16; b = -8; c = -40;
Δ = b2-4ac
Δ = -82-4·16·(-40)
Δ = 2624
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2624}=\sqrt{64*41}=\sqrt{64}*\sqrt{41}=8\sqrt{41}$
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-8\sqrt{41}}{2*16}=\frac{8-8\sqrt{41}}{32} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+8\sqrt{41}}{2*16}=\frac{8+8\sqrt{41}}{32} $

See similar equations:

| -2(7y+8)-6y=2(y-6)-2 | | 12x-3-5x=12-3x-5x | | 2x+12=16-5x | | 2(4-2x)=8x-13 | | -8v+6(v-6)=22 | | 2p+p^2=7/9 | | (x-2)^2=-2x+31 | | 14-2x=70-x | | x/0,2+12=16 | | 8x+8=54x+18 | | y+1/8=2 | | X3-50x=-125 | | 56x=50x+6 | | D) 2x+4=24 | | n^2-4n+93=0 | | 5x²=5x+1 | | 3x+47=27 | | M^2+12m=64 | | 290=83-w | | -5=(t+15)(t+20) | | -74=6-8y | | 3(4x-4)-4=11-(4x-5) | | 2x-24=-x^2 | | 0=x=180 | | A(t)=10000(1.02)^(20) | | y-2.6=4.5 | | 20x+32=16x | | (1/2)^n=1/8 | | 12x=80-20x | | 5x^2=-10x-4 | | 2(2x+4)=6x+5-2x+3 | | f(1)-f(0)=2020 |

Equations solver categories